Pedestrian Detection Algorithm Based on Local Color Parallel Similarity Features
نویسندگان
چکیده
HOG Feature is the mainstream feature applied in the field of pedestrian detection .HOG combined with CSS has good effects on pedestrian detection. Because of the large amount calculation of HOG and CSS, HOG and CSS has poor real-time performance, we propose LCSSF (Local Color Self Similarity Feature) avoiding calculating the global color similarity distribution of CSS. The tested results of the Inria and the street pedestrian database show that the accuracy of the HOG with LCSSF has better detection performance and better real-time performance than HOG
منابع مشابه
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملColor Features for Boosted Pedestrian Detection
The car has increasingly become more and more intelligent throughout the years. Today’s radar and vision based safety systems can warn a driver and brake the vehicle automatically if obstacles are detected. Research projects such as the Google Car have even succeeded in creating fully autonomous cars. The demands to obtain the highest rating in safety tests such as Euro NCAP are also steadily i...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Trainable Similarity Measure for Image Classification
In object recognition problems a two-stage system is usually adopted composed of a fast and simple detector and a more complex classifier. This paper studies a design of the second stage classifier based on the recently proposed trainable similarity measure which is specifically designed for supervised classification of images. Common global measures such as correlation suffer from uninformativ...
متن کامل